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Abstract

In this study, the instability of triple-walled carbon nanotubes (TWCNTs) conveying fluid is studied based on an

Euler–Bernoulli beam model. The van der Waals (vdW) interactions between different carbon nanotubes (CNTs) are taken

into account in the analysis, and the Galerkin discretization approach is used to solve the coupled equations of the

motions. Numerical simulations show that the interlayer vdW interactions play a significant role in the natural frequencies

and the stability of TWCNTs. The critical flow velocities—associated with divergence, restabilization and flutter—are

determined. The effects of different inner radius and the value of mode N used in Galerkin discretization on the dynamical

behaviors of the fluid-conveyed TWCNTs are also examined in detail. Results reveal that the internal moving fluid plays an

important role in the instability of TWCNTs.

r 2008 Published by Elsevier Ltd.
1. Introduction

Fluid flows inside carbon nanotubes (CNTs) have become an attractive research topic in recent years, and a
great deal of literature has been published on topics such as water flow through CNT junctions [1], the
reorientability of water molecules inside CNTs [2], the effects of wall–fluid interactions [3], the static wetting
behavior of water on a carbon nanotube surface [4], the diffusive transport of light gases in CNTs [5] and the
dependence of the fluid behavior on the size of CNTs [6].

In the aforementioned studies, molecular dynamics simulations (MDSs) are involved; however, MDS is
complex and time consuming, especially for a large-sized atomic system, due to the limitations of the current
computing capacity. Considering the difficulties of a controlled experiment on such a scale, a theoretical
simulation seems a better way to investigate the properties of CNTs. It is reported that continuum mechanics
models are rather effective in the prediction of the mechanical characteristics of not only single-walled carbon
ee front matter r 2008 Published by Elsevier Ltd.
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nanotubes (SWCNTs) but also multi-walled carbon nanotubes (MWCNTs). For example, the equations of a
thin hollow cylinder have been applied to analyze the low-frequency vibration of a SWCNT [7], and the
prediction of the breathing mode is validated by experiments [8]. Sound velocity predicted by the Euler-beam
model agrees well with data obtained by other methods [9]. Buckling and vibrational behaviors of CNTs have
also been investigated by using the Euler- and Timoshenko-beam models; moreover, the buckling load, the
resonant frequencies and the vibrational modes of SWCNTs are in general agreement with the experimental
results [10–12]. In addition, in-situ experimental studies have indicated that the liquid behavior in
hydrothermal CNTs can be described using continuum fluid transport and phase change concepts except
for the extreme case of thin channels and thin liquid films [13]. Furthermore, the water flow measurement
through CNTs with diameters of o2 nm was carried out [14]. The results show that in this size regime (about
6 water molecules in diameter) the measured water flow exceeds values calculated from continuum
hydrodynamics models by more than three orders of magnitude, because continuum theory concepts such as a
velocity profile may be different to be defined. They also reveal that the small differences in nanotube diameter
can have large effects on transport. Besides, MDS was used to test the validity of Navier–Stokes equations in
analysis of nanochannels [15–19]. The results show that when the fluid flows in slit channels as narrow as 10
fluid molecular diameters, the deviation between the continuum and MDS predictions is very small [19].

Recently, the influence of the internal moving fluid on the free vibration and flow-induced instability of
SWCNTs has been studied by modeling the CNT as an Euler–Bernoulli beam [20,21]. The model of
Euler–Bernoulli beam gives simply general formulas in many important cases [20–24], which clearly indicate
major factors affecting mechanical behaviors of CNTs (and thus rule out other less important parameters).
Usually, it is hard to obtain such simple formulas by other methods. It is true that the application of
Euler–Bernoulli beam model may not be a best choose for enough short nanotubes compared with shell model
[25] and Timshenko-beam model, but because it is simpler and can well predict mainly the physical
phenomena. In most cases, we can well predict the bifurcations of the system with the Euler–Bernoulli model
as like with the shell model in Ref. [26].

So, in this paper, CNTs are modeled as Euler–Bernoulli beam, and the established governing equations are
coupled each other on the basis of a more refined van der Waals (vdW) model [27]. It is noted that the
equations of motion for SWCNTs cannot be used directly for TWCNTs due to the vdW interactions between
any two different tubes, the governing equations for the vibration and structural instability of a TWCNT
conveying fluid are derived herein by using Hamilton’s principle. Then, the flow-induced instability and
bifurcations of TWCNTs are investigated in detail. In particular, the critical flow velocities are determined for
the divergence and flutter of CNTs for the various inner radius and the value of mode N used in the Galerkin
discretization. More importantly, the effects of the vdW interactions on the critical velocities and the natural
frequencies of the fluid-conveyed TWCNTs are examined.

2. Coupled beam model for TWCNT conveying fluid

The TWCNTs are modeled as a triple-tube pipe which consists of the inner tube of radius R1, middle tube of
radius R2 and the outer tube of radius R3 as shown in Fig. 1. The thickness of every tube is h, the length is L,
and modulus of elasticity is E. The internal fluid of mass per unit length mf is assumed to flow steadily through
the inner tube with a constant velocity U. The formulation presented here is based on the Euler–Bernoulli
beam theory, which leads to the following displacement:

ūiðx; z; tÞ ¼ uiðx; tÞ � z
qwi

qx
,

w̄iðx; z; tÞ ¼ wiðx; tÞ, (1)

where x is the axial coordinate, t is time, ūi and w̄i are the total displacements of the ith tube along the
coordinate directions x and z, ui and wi denote the axial and transverse displacements of the ith tube on the
neutral axis, and the subscript i ¼ 1; 2; 3.

The potential energy P stored in a TWCNT and the virtual kinetic energy T in the TWCNT as well as the
fluid inside the TWCNT are given, respectively, by
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Fig. 1. Clamped TWCNTs conveying fluid of the mass mf (per unit axial length) at the flow velocity U.
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where y1 ¼ �qw1=qx, I i and mi are the moment of inertia and the mass of the ith tube per unit length, rt is the
mass density of the beam material, rf is the mass density of the fluid inside the tube 1, A1 ¼ pððR1 þ hÞ2 �

R2
1Þ;A2 ¼ pððR2 þ hÞ2 � R2

2Þ and A3 ¼ pððR3 þ hÞ2 � R2
3Þ are corresponding to the cross-sectional areas of tube 1,

tube 2 and tube 3, and Af ¼ pR2
1 is the cross-sectional areas of the fluid passage in tube 1. The subscripts

1, 2, and 3 denote the inner tube, the middle tube and the outer tube, respectively. Thus, the variational form
of the equations of the motion for the TWCNTs can be written, by using Hamilton’s principle, asZ t1

t0

ðdP� dT � dV Þdt ¼ 0, (3)

where

dP ¼ � EA1

Z L

0

q2u1

qx2
dx du1 � EA2

Z L

0

q2u2

qx2
dx du2 � EA3

Z L

0

q2u3

qx2
dx du3

þ EI1

Z L

0

q4w1

qx4
dx dw1 þ EI2

Z L

0

q4w2

qx4
dx dw2 þ EI3

Z L

0

q4w3

qx4
dx dw3, (4a)
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and the virtual work due to the vdW interactions and the interactions between tube 1 and the flowing fluid:

dV ¼

Z L
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2w1

qx2
cos y1

� �
dx dw1

þ

Z L

0

½c21ðw2 � w1Þ þ c23ðw2 � w3Þ�dx dw2

þ

Z L

0

½c31ðw3 � w1Þ þ c32ðw3 � w2Þ�dx dw3

�

Z L

0

mf U2 q
2w1

qx2
sin y1 dx du1, (4c)

where all the terms involving ½��L0 and ½��t1t0 vanish on account of the clamped ends and the assumption that all
variables and derivatives are zero at t ¼ t0 and t1, and cij is the vdW interaction coefficient which can be
expressed as [27]

cij ¼ �2
1001p�s12

3a4
E13

ij �
1120p�s6

9a4
E7

ij

� �
RiRj, (5a)

where �, a and s are the parameters used in calculating the vdW interaction coefficient [28], and

Em
ij ¼ ðRi þ RjÞ
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Z p=2
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½1� Kij cos2 y�m=2
, (5b)

Kij ¼
4RiRj

ðRi þ RjÞ
2
. (5c)

We assume that yi ¼ �qwi=qx is small such that cos yi � 1 and sin yi � yi. Substituting for dP; dT and dV

from Eqs. (4a)–(4c) into Eq. (3), we obtain the governing equations for the vibration and structural instability
of the TWCNTs conveying fluid:
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m2
q2u2

qt2
� EA2

q2u2

qx2
¼ 0, (6b)
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Consider the case of the TWCNTs with clamped ends. The boundary conditions are w ¼ 0 and qw=qx ¼ 0
at both ends. It is noted that there are no tangential external loading along the axial or the circumferential
directions of the TWCNTs. In this case, the deformation of the TWCNTs along the axial direction can be
neglected and the equations of the motion for the radial deflection wi of the ith tube of the TWCNTs can be
simplified, by omitting all of the nonlinear terms and fourth derivative with respect to time and spatial. Three
coupled equations, thus, are obtained as
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Eqs. (7a)–(7c) may be rewritten in dimensionless form as
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For TWCNTs of length L as shown in Fig. 1, letting every individual tube have the same end conditions, the
deflections of all tubes can be approximated by N-mode Galerkin discretization, namely

Z1 ¼
XN

r¼1

qrðtÞfrðxÞ; Z2 ¼
XN

r¼1

qrþNðtÞfrðxÞ; Z3 ¼
XN

r¼1

qrþ2NðtÞfrðxÞ. (10)

The substitution of Eq. (10) into Eqs. (9a)–(9c), followed by multiplication with fs and integration over the
domain [0, 1], yields
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If considering N ¼ 2, Eqs. (11a)–(11c) may be converted into 12 first-order differential equations [29]
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_q6 ¼ p6; _p6 ¼ �
c̄31

b3
q2 �

c̄32

b3
q4 �
ðl42 � c̄31 � c̄32Þ

b3
q6. (12)

Eq. (12) is rewritten in a matrix form as follows:
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where

H1 ¼ �ðl
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1 þ u2d11 � c̄12 � c̄13Þ; H2 ¼ �ðl
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2 þ u2d22 � c̄12 � c̄13Þ; H3 ¼ �
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H4 ¼ �
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sin lr � sinh lr

,

dsr ¼

Z 1

0

fsfr dx ¼
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(
(14)

is the Kronecker’s delta, and lr denotes the rth dimensionless, eigenvalue of the beam, and f0000 ¼ l4fr, where
l1 ¼ 4:73, and l2 ¼ 7:85. The notation ½C� represents the coefficient matrix of the right-hand side of Eq. (13)
from now on for convenience.

If considering N ¼ 3, Eqs. (11a)–(11c) may be converted into 18 first-order differential equations [29]:
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_q4 ¼ p4; _p4 ¼ �
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c̄31

b3
q2 �

c̄32

b3
q5 �
ðl42 � c̄31 � c̄32Þ

b3
q8,

_q9 ¼ p9; _p9 ¼ �
c̄31

b3
q3 �

c̄32

b3
q6 �
ðl43 � c̄31 � c̄32Þ

b3
q9. (15)

Eq. (15) is rewritten in a matrix form as Eq. (13), in which the matrix ½C� is

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H1 0 0 �2
ffiffiffiffiffi
b1

p
ub12 �u2d13 0 �c̄12 0 0 0 0 0 �c̄13 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2
ffiffiffiffiffi
b1

p
ub12 H2 0 0 �2

ffiffiffiffiffi
b1

p
ub23 0 0 �c̄12 0 0 0 0 0 �c̄13 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

�u2d31 0 0 �2
ffiffiffiffiffi
b1

p
ub32 K1 0 0 0 0 0 �c̄12 0 0 0 0 0 �c̄13 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

�
c̄21

b2
0 0 0 0 0 H3 0 0 0 0 0 �

c̄23

b2
0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 �
c̄21

b2
0 0 0 0 0 H4 0 0 0 0 0 �

c̄23

b2
0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 �
c̄21

b2
0 0 0 0 0 K2 0 0 0 0 0 �

c̄23

b2
0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

�
c̄31

b3
0 0 0 0 0 �

c̄32

b3
0 0 0 0 0 H5 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 �
c̄31

b3
0 0 0 0 0 �

c̄32

b3
0 0 0 0 0 H6 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 �
c̄31

b3
0 0 0 0 0 �

c̄32

b3
0 0 0 0 0 K3 0

2
666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777775

(16)

where

K1 ¼ �ðl
4
3 þ u2d33 � c̄12 � c̄13Þ; K2 ¼ �

1

b2
ðl43 � c̄21 � c̄23Þ; K3 ¼ �

1

b3
ðl43 � c̄31 � c̄32Þ. (17)
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Thus, the characteristic equation of the system of Eqs. (13) and (16) are stated as

detðl½I � � ½C�Þ ¼ 0, (18)

where ½I � is an identity matrix.
3. Results and discussions

The fluid-conveyed TWCNTs are analyzed to determine the instability characteristics and the influences of
the vdW interactions between the different nanotubes. In numerical computations, the TWCNTs considered
are clamped at both ends. The inner, middle and outer tubes have the same length L, and they are modeled
by using Euler-beam model. The initial separation between two adjacent tubes is taken as 0.34 nm.
The parameters that are used in calculating the vdW interactions coefficient are � ¼ 2:968meV, a ¼ 1:42 Å
and s ¼ 3:407 Å [28]. The tubes have the same Young’s modulus E ¼ 1TPa with the mass density 2:3 g=cm3,
and the mass density of water 1 g=cm3. In order to examine the influences of the radii of the TWCNTs,
two cases are considered. The first case is the inner radius R1 ¼ 3:4 nm which is about 20 water molecular sizes
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(the middle radius R2 ¼ 3:74 nm and the outer radius R3 ¼ 4:08 nm), and the second case the inner radius of
R1 ¼ 11:9 nm which is about 79 water molecular sizes (the middle radius R2 ¼ 12:24 nm and the outer radius
R3 ¼ 12:58 nm). Because the radii used in the analysis are larger than 1 nm and the number of the water
molecules in the tube is more than 10, so it makes sure that the continuum model predictions are valuable.
Moreover, something about flow velocity should be mentioned that the available data in the literature for flow
velocity inside CNTs range from 400m/s [30] to 2000m/s [6], or even up to 50,000m/s [31].

Mathematically, the evolution of a system towards divergence or flutter may be tracked by plotting
the complex eigenvalues in the plane [32]. The diagrams for the evolution of the real and imaginary parts of
the eigenvalues of the CNTs conveying fluid are plotted as the function of the fluid velocity U in Figs. 2–5
for the cases R1 ¼ 3:4 and 11.9 nm, namely N ¼ 2 and 3, respectively. Figs. 2a to 5a show the dependency of
the imaginary part of the eigenvalues (which represent the natural frequencies) of the inner CNT as the fluid
velocity, and Figs. 2b to 5b are the plottings of the real part of the eigenvalue which is regarded as a ‘‘damping
mechanism’’ resulting from the flow energy transfer from the moving fluid to the inner wall of the TWCNTs.
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The real part is positive for the unstable TWCNTs as the fluid velocity, or negative for the stable
characteristics.

The critical flow velocities of the system are identified sequentially by UD, UR and UF without the vdW
interactions and by Ud , Ur and Uf with the vdW interactions. As a typical dynamic behavior example, Fig. 2
is taken to examine the influences of the fluid on the instabilities of the fluid-conveyed TWCNTs. The results
show that the internal moving fluid significantly affects the natural frequencies of the inner tube. In the case
with vdW interactions, in the region of UoUd the two different frequency curves decrease parabolically with
increasing fluid velocities, and the real parts of all eigenvalues are zero, as shown in Fig. 2b. These imply that
the system is stable. While when the first critical velocity Ud is reached, the natural frequency of the first mode
becomes zero, which the system loses its stability due to the divergence via a pitchfork bifurcation. Thereafter,
in the region of UdoUoUr, the eigenvalues have the positive real parts, which the system becomes unstable.
When the velocity is in the region of UXUr, the imaginary parts of all eigenvalues are distinguished and
the real parts become zero, as shown in Figs. 2a, b. This implies that the critical velocity Ur does not
correspond to the unstable state and the system restabilizes until U ¼ Uf , whereupon the loci of the first
and second modes coalesce at point Uf , as shown in Fig. 2a, which indicates the onset of the flutter via a
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Hamiltonian Hopf bifurcation. After U4Uf , as one of the real part is positive, the system becomes unstable
once more.

Next, we discuss the influence of the vdW interaction. Considering a TWCNT conveying fluid without vdW
interaction, we have cij ¼ 0. In this case, Eqs. (7a)–(7c) are reduced to a common beam model. It is evident
from Figs. 2 to 5 that the values of the critical velocities are decreased. This shows that the system is more
stable with vdW interactions. So, the vdW interactions benefit improvement of the system stability. For the
effects of the inner tube radius and length-to-middle radius on the stability, the changes of the critical
velocities are listed in Table 1 and shown in Figs. 6 and 7 with the length-to-middle radius ratios L=R2. It is
observed from Table 1 and Figs. 6 and 7 that the critical velocities of the system are dependent on the inner
radius. The smaller is the inner radius, the higher is the critical velocities. The reason is explained as Ref. [21]
that the flexural restoring force of a smaller radius CNT is significantly larger than that of a larger radius
CNT. Thus, the interactions between the fluid and the inner tube wall have to resist the restoring force of the
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Table 1

Critical flow velocity for the instability of the inner tube (m/s)

Critical velocity U With vdW interaction L=R2 ¼ 10 Without vdW interaction L=R2 ¼ 10

N ¼ 2 N ¼ 3 N ¼ 2 N ¼ 3

3.4 nm

Divergence 12,106 12,106 6247 6247

Restabilization 15,482 15,482 8896 8896

Flutter 16,325 16,128 9763 9521

Divergence – 18,506 – 12,593

Flutter – 19,332 – 13,758

11.9 nm

Divergence 6110 6110 3387 3387

Restabilization 8611 8611 4823 4823

Flutter 9563 9264 5622 5521

Divergence – 11,839 – 6916

Flutter – 13,432 – 8733
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Fig. 6. Critical velocities with R1 ¼ 3:4 nm for N ¼ 2 of clamped TWCNTs.
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smaller radius CNTs at a higher flow velocity. However, for TWCNTs with the same radius, the critical
velocities are relatively high for small length-to-middle radius ratios. The critical velocities decrease sharply as
the length-to-middle radius ratio increases for L=R2p50, and then vary slowly as the flow velocity and tend to
a constant value when the length-to-middle radius ratio is large enough.

To examine the effect of fluid flow inside the inner tube on the instability of the middle and outer tubes, the
natural frequencies of TWCNTs with various inner radii are calculated and listed in Table 2 for various fluid
velocities. It can be seen that the variation of natural frequencies is very small and can be neglected. This
indicates that fluid flow has very little influence on the dynamic characteristics of the middle tube and outer
tube. In addition, it is observed that the vdW interaction plays an important role in the natural frequencies of
the middle and the outer tube.

Finally, we discuss the effects of the different terms N in the Galerkin approximation on the stability. If we
take more terms ð42Þ in the approximation solutions in Eq. (10), the matrix ½C� become more complex, for
example, when N ¼ 2, it is a 12� 12 matrix; when N ¼ 3, it is a 18� 18 matrix; and when N ¼ 4, it is a
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Table 2

Natural frequencies ð�1010 HzÞ of the middle tube and outer tube

Inner radius R1 Velocity U (km/s) With vdW interaction L=R2 ¼ 10 Without vdW interaction L=R2 ¼ 10

N ¼ 2 N ¼ 3 N ¼ 2 N ¼ 3

Mode 1 Mode 2 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 1 Mode 2 Mode 3

3.4 nm Middle tube

0 498.14 544.60 498.14 544.60 689.34 92.30 254.22 92.30 254.22 498.78

2.65 497.71 544.96 497.84 545.50 689.38 92.30 254.22 92.30 254.22 498.78

5.30 496.50 545.97 496.57 549.24 689.62 92.30 254.22 92.30 254.22 498.78

7.95 494.65 547.46 494.91 554.21 689.94 92.30 254.22 92.30 254.22 498.78

10.6 492.42 549.20 492.93 559.99 690.35 92.30 254.22 92.30 254.22 498.78

Outer tube

0 1074.12 1100.22 1074.06 1100.23 1182.55 100.30 276.28 100.30 276.28 542.06

2.65 1074.12 1100.24 1074.06 1100.25 1182.55 100.30 276.28 100.30 276.28 542.06

5.30 1074.08 1100.35 1074.04 1100.44 1182.55 100.30 276.28 100.30 276.28 542.06

7.95 1074.07 1100.36 1074.04 1100.70 1182.59 100.30 276.28 100.30 276.28 542.06

10.6 1074.06 1100.38 1074.02 1101.06 1182.61 100.30 276.28 100.30 276.28 542.06

11.9 nm Middle tube

0 439.98 444.85 439.99 444.84 460.69 27.33 75.27 27.33 75.27 147.68

2.65 439.74 445.10 439.75 445.00 460.89 27.33 75.27 27.33 75.27 147.68

5.30 439.13 445.73 439.09 445.33 461.42 27.33 75.27 27.33 75.27 147.68

7.95 438.33 446.57 438.24 445.69 462.36 27.33 75.27 27.33 75.27 147.68

10.6 437.43 447.53 437.26 445.98 463.58 27.33 75.27 27.33 75.27 147.68

Outer tube

0 1074.44 1076.72 1074.37 1076.65 1084.15 28.08 77.33 28.08 77.33 151.72

2.65 1074.44 1076.72 1074.37 1076.65 1084.15 28.08 77.33 28.08 77.33 151.72

5.30 1074.42 1076.74 1074.37 1076.69 1084.15 28.08 77.33 28.08 77.33 151.72

7.95 1074.41 1076.76 1074.37 1076.69 1084.19 28.08 77.33 28.08 77.33 151.72

10.6 1074.36 1076.76 1074.33 1076.73 1084.19 28.08 77.33 28.08 77.33 151.72

Y. Yan et al. / Journal of Sound and Vibration 319 (2009) 1003–10181016
24� 24 matrix. The comparisons of the evolution of the real and imaginary parts of the eigenvalues of the
CNT-fluid system with N ¼ 2 and 3 are plotted in Fig. 8 for R1 ¼ 11:9 nm and L=R2 ¼ 50 with vdW
interactions. It is noted that with the increase of the terms N, the bifurcations of system become more complex.
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In general, high-N approximations become necessary to adequately represent the dynamics of the system as
U is increased, where N ¼ 2 Galerkin approximations can predict Ud or Ur very well.
4. Conclusions

The instability problems of the fluid-conveyed TWCNTs have been studied in this paper. The TWCNTs are
modeled as Euler–Bernoulli beam. In contrast to the work by Yoon et al. [20,21], in which only the first critical
flow velocity is determined for the instability of a SWCNT system, the critical flow velocities for the
instabilities by a pitchfork bifurcation and a Hamiltonian Hopf bifurcation are obtained herein. The effects of
the vdW interactions and the dimensions of TWCNTs on the stability are discussed, and the results show that
the vdW interactions enhances the stability of the system, and the critical flow velocities increase very rapidly
with decreasing inner radius. The internal moving fluid plays an important role in the instability of the CNTs-
fluid system.
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